
CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Advance Web Technologies
&

Programming (CSC350)

Lecture 5
Node Modules and MEAN

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 How Mean Stack works?

 Introduction to Node.JS
◦ Concurrency

◦ Event Loop/Event Emitter

◦ Non Blocking I/O

◦ Performance

 Node.JS Modules

 NPM

 Installation

 Getting Started

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre
3

JSON

JSON

JSON

JSON

Collection of JavaScript based technologies used to develop web applications.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Data Integration Differences

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 A JavaScript runtime environment running

Google Chrome’s V8 engine
◦ a.k.a. a server-side solution of JS

◦ Compiles JS, making it really fast

 Runs over the command line

 Designed for high concurrency
◦ Without threads or new processes

 Never blocks, not even for I/O

 Uses the CommonJS framework
◦ Making it a little closer to a real OO language

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 Node.JS is single threaded.
◦ But it can support concurrency via the concept

of event and callbacks.

 Instead of threads Node uses an event loop
with a stack

 Alleviates overhead of context switching.

 Node uses observer pattern.

 Node thread keeps an event loop and
whenever a task gets completed, it fires the
corresponding event which signals the event-
listener function to execute.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 Every API of Node.js is asynchronous and
being single-threaded

 JavaScript engine maintains several queues
of unhandled tasks.
◦ These queues include things such as events,

timers, intervals, and immediates.

◦ Each execution of the event loop, known as a
cycle, causes one or more tasks to be dequeued
and executed.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

• An event loop is an endless loop, which waits for tasks, executes
them, and then sleeps until it receives more tasks.

• The event loop executes tasks from the event queue only when the
call stack is empty i.e. there is no ongoing task.

• The event loop allows us to use callbacks and promises.
• The event loop executes the tasks starting from the oldest first.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

• Explanation:
• First statement is pushed to

the call stack, executed and
task is popped from the stack.

• setTitmeout is pushed to the
queue and task is sent to the
OS and the timer is set for the
task. The task is then popped
from the stack.

• The third statement is pushed
to the stack, executed and
popped from the stack.

console.log("This is the first statement");

setTimeout(function(){

 console.log("This is the second statement");

}, 1000);

console.log("This is the third statement");

Output:
This is the first statement
This is the third statement
This is the second statement

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 Request for “index.html” comes in

 Stack unwinds and ev_loop goes to sleep

 File loads from disk and is sent to the client

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre



CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 Each phase perform a
specific task.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 As these tasks execute, they can add more
tasks to the internal queues.

 They use async function calls to maintain
concurrency. Node uses observer pattern.

 Node thread keeps an event loop and
whenever a task gets completed, it fires the
corresponding event(Event Emit) which
signals the event-listener function to
execute.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 Many objects in a Node emit events.
◦ For example, a Server emits an event each time a

peer connects to it, an fs.readStream emits an event
when the file is opened.

◦ In the browser, an event could be a mouse click or
key press.

 All objects which emit events are the
instances of events.EventEmitter.

 Elsewhere in the code, subscribers can listen
for these events and react to them when they
occur.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 To set up an event listener in Node, use the
on(), addListener(), and once() methods.
◦ The on() and addListener() work in exactly the same

manner: they create listeners for a specific type of
event.

◦ We prefer on() over addListener() as it requires less
characters.

◦ Once() only invoke call back function one time and
stop the listener.

◦ Error events can be handled like any other events. Following
code shows how an error event is handled using on():

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

var http = require("http");

http.createServer(function (request, response) {

response.writeHead(200, {'Content-Type': 'text/plain'});

response.end('Hello World\n');

}).listen(8081);

console.log('Server running at http://127.0.0.1:8081/’);

 Here “listen” is a wrapper function of on() event
listener

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Threads Asynchronous Event-driven

Lock application / request with
listener-workers threads

only one thread, which
repeatedly fetches an event

Using incoming-request model Using queue and then processes
it

multithreaded server might
block the request which might
involve multiple events

manually saves state and then
goes on to process the next
event

Using context switching no contention and no context
switches

Using multithreading
environments where listener
and workers threads are used
frequently to take an incoming-
request lock

Using asynchronous I/O
facilities (callbacks, not
poll/select) environments

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 Servers do nothing but I/O
◦ Scripts waiting on I/O requests degrades

performance

 To avoid blocking, Node makes use of the
event driven nature of JS by attaching
callbacks to I/O requests

 Scripts waiting on I/O waste no space
because they get popped off the stack when
their non-I/O related code finishes executing

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 Use of JS on both the client and server-side

should remove need to “context switch”
◦ Client-side JS makes heavy use of the DOM, no

access to files/databases

◦ Server-side JS deals mostly in files/databases, no
DOM

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

1. It's fast.(As soon as Node starts its server, it simply
initiates its variables, declares functions and then
simply waits for the event to occur.)

2. It can handle tons of concurrent requests

3. It's written in JavaScript (which means you can
use the same code server side and client side)

Platform Number of request per
second

PHP (via Apache) 3187,27

Static (via Apache) 2966,51

Node.js 5569,30

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Introduction to its modules

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 Import using require()
◦ System module: require("fs"); // Looks in node_module directories

◦ From a file: require("./XXX.js"); // Reads specified file

◦ From a directory: require("./myModule"); // Reads
myModule/index.js

 Module files have a private scope
◦ Can declare variables that would be global in the browser

◦ Require returns what is assigned to module.exports

 var notGlobal;

 function func1() {}

 function func2() {}

 module.exports = {func1: func1, func2: func2};

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 Many standard Node modules
◦ File system, process access, networking, timers, devices,

crypto, etc.

 Huge library of modules (npm(Node
Package Manager))
◦ Do pretty much anything you want

 We use:
◦ Express - Fast, unopinionated, minimalist web framework

(speak HTTP)

◦ Mongoose - Elegant mongodb object modeling
(speak to the database)

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 Buffer

 C/C++ Addons

 Child Processes

 Cluster

 Console

 Crypto

 Debugger

 DNS

 Errors

 Events

 File System

 Globals

 Timers

➢ TLS/SSL

➢ TTY

➢ UDP/Datagram

➢ URL

➢ Utilities

➢ V8

➢ VM

➢ ZLIB

➢ HTTP

➢ HTTPS

➢ Modules

➢ Net

➢ OS

➢ Path

➢ Process

➢ Punycode

➢ Query Strings

➢ Readline

➢ REPL

➢ Stream

➢ String Decoder

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

var fs = require("fs"); // require is a Node module call

// fs object wraps OS sync file system calls

// OS read() is synchronous but Node's fs.readFile is
asynchronous

fs.readFile("smallFile", readDoneCallback); // Start read

function readDoneCallback(error, dataBuffer) {

// Node callback convention: First argument is JavaScript Error
object

// dataBuffer is a special Node Buffer object

if (!error) {

console.log("smallFile contents", dataBuffer.toString());

}

}

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 you need to have the following two software
on your computer,
◦ (a) Text Editor

◦ (b) Node.js binary installables.

 The source files for Node.js programs are
typically named with the extension ".js"

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 Use the MSI file and follow the prompts to install
Node.js.
◦ By default, the installer uses the Node.js distribution in

C:\Program Files\nodejs.

◦ The installer should set the C:\Program Files\nodejs\bin
directory in Window's PATH environment variable.

◦ Restart any open command prompts for the change to take
effect.

 Create a js file named main.js on your machine
(Windows or Linux) having the following code.

/* Hello, World! program in node.js */

console.log("Hello, World!")

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 Now execute main.js using Node.js interpreter to
see the result:

 $ node main.js

 If everything is fine with your installation, it should
produce the following result:

 Hello, World!

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 A Node.js application consists of the following
three important components:

 1. Import required modules: We use the require
directive to load Node.js modules.

 2. Create server: A server which will listen to
client's requests similar to Apache HTTP Server.

 3. Read request and return response: The server

created in an earlier step will read the HTTP

request made by the client which can be a browser
or a console and return the response.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 Step 1 - Import Required Module

 We use the require directive to load the http
module and store the returned HTTP instance
into an http variable as follows:

var http = require("http");

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 Step 2 - Create Server
◦ We use the created http instance and call http.createServer() method to

create a server instance and then we bind it at port 8081 using the listen
method associated with the server instance. Pass it a function with
parameters request and response. Write the sample implementation to
always return "Hello World".

http.createServer(function (request, response) {

// Send the HTTP header & HTTP Status: 200 : OK

// Content Type: text/plain

response.writeHead(200, {'Content-Type': 'text/plain'});

// Send the response body as "Hello World"

response.end('Hello World\n');

}).listen(8081);

// Console will print the message

 console.log('Server running at http://127.0.0.1:8081/');

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

var http = require("http");

http.createServer(function (request, response) {

// Send the HTTP header

// HTTP Status: 200 : OK

// Content Type: text/plain

response.writeHead(200, {'Content-Type': 'text/plain'});

// Send the response body as "Hello World"

response.end('Hello World\n');

}).listen(8081);

// Console will print the message

console.log('Server running at http://127.0.0.1:8081/');

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 Now execute the main.js to start the server as
follows:

 $ node main.js

 Verify the Output. Server has started.

 Server running at http://127.0.0.1:8081/

 Make a Request to the Node.js Server

 Open http://127.0.0.1:8081/ in any browser and observe the
following result.

 Congratulations, you have your first HTTP server up and
running which is responding to all the HTTP requests at port
8081.

http://127.0.0.1:8081/

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

 $ npm --version

2.7.1
 $ sudo npm install npm –g//update NPM

/usr/bin/npm -> /usr/lib/node_modules/npm/bin/npm-cli.js

npm@2.7.1 /usr/lib/node_modules/npm

 Installing Modules using NPM

◦ There is a simple syntax to install any Node.js module:

 $ npm install <Module Name>

 For example, following is the command to install a famous
Node.js web framework module called express:

 $ npm install express

 Rate of approximately170 modules per day

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

	Slide 1
	Slide 2: Road Map
	Slide 3
	Slide 4
	Slide 5: What is NodeJS?
	Slide 6: Concurrency: The Event Loop
	Slide 7: Event Loop
	Slide 8: Event Loop Features
	Slide 9: Event Loop Features
	Slide 10: Event Handling
	Slide 11: Event Loop Example
	Slide 12: Event Loop
	Slide 13: Working of the Event Loop
	Slide 14: Phases of the Event Loop
	Slide 15: Event Loop
	Slide 16: Event Emitter
	Slide 17: Event Listening
	Slide 18: Example
	Slide 19: Threads VS Event-driven
	Slide 20: Cost of I/O
	Slide 21: Non-blocking I/O
	Slide 22: I/O Example
	Slide 23: Consistency
	Slide 24: Performance Node.js VS Apache
	Slide 25: Node. JS
	Slide 26: Node.JS major Components
	Slide 27: Node Modules
	Slide 28: Node Modules
	Slide 29: Major Node Modules
	Slide 30: Example Node.JS reading a file
	Slide 31: Starting with Node.JS
	Slide 32: Installation On Windows
	Slide 33: Installation verification
	Slide 34: Steps to Create Application
	Slide 35: Step 1
	Slide 36: Step 2
	Slide 37: Step 3
	Slide 38: Step 3
	Slide 39: NPM
	Slide 40: Growth of NPM

